ECE325 Advanced Photonics
 Light propagation in anisotropic crystals lesson 1

Andrea Fratalocchi

www.primalight.org
July 3, 2021

Outline

(1) Energy and symmetry considerations
(2) Classification of anisotropic crystals
(3) Plane waves in anisotropic crystals

4 Reference texts

Energy and symmetry considerations

In a generic anisotropic medium, the relationship between the polarization vector \boldsymbol{p} and the electric field \boldsymbol{e} reads as $\boldsymbol{p}=\epsilon_{0} \underline{\underline{\chi}} \boldsymbol{e}$, with:

$$
\underline{\underline{\chi}}=\left[\begin{array}{lll}
\chi_{11} & \chi_{12} & \chi_{13} \tag{1}\\
\chi_{21} & \chi_{22} & \chi_{23} \\
\chi_{31} & \chi_{32} & \chi_{33}
\end{array}\right]
$$

being $\underline{\underline{\chi}}$ a rank-2 tensor describing the anisotropic response of the material. The electric displacement then becomes:

$$
\begin{equation*}
\boldsymbol{d}=\epsilon_{0} \boldsymbol{e}+\boldsymbol{p}=\underline{\underline{\epsilon}} \boldsymbol{e} \tag{2}
\end{equation*}
$$

with:

$$
\underline{\underline{\epsilon}}=\left[\begin{array}{lll}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} \tag{3}\\
\epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{31} & \epsilon_{32} & \epsilon_{33}
\end{array}\right],
$$

the anisotropic dielectric tensor.

Energy and symmetry considerations

- Question: are all the 9 elements of the tensors $\underline{\underline{\chi}}$ and $\underline{\underline{\epsilon}}$ independent?

Energy and symmetry considerations

- Question: are all the 9 elements of the tensors $\underline{\underline{\chi}}$ and $\underset{\underline{\epsilon}}{\underline{\text { ind }}}$ independent?

To answer to this question we can start from the electromagnetic energy stored in the material:

$$
\begin{equation*}
\mathcal{E}=\frac{1}{2}(\boldsymbol{e} \cdot \boldsymbol{d}+\boldsymbol{h} \cdot \boldsymbol{b})=\frac{1}{2}\left(e_{k} \epsilon_{k l} e_{l}+\mu_{0} h_{l} h_{l}\right) \tag{4}
\end{equation*}
$$

where we have adopted Einstein summation convention over repeated indices, i.e., $\sum_{j=1}^{3} a_{i j} b_{j} \equiv a_{i j} b_{j}$. We then take the time derivative of (4):

$$
\begin{equation*}
\dot{\mathcal{E}}=\frac{\epsilon_{k l}}{2}\left(\dot{e}_{k} e_{l}+e_{k} \dot{e}_{l}\right)+\mu_{0} \dot{h}_{l} h_{l} \tag{5}
\end{equation*}
$$

where $\dot{A} \equiv \frac{\partial A}{\partial t}$. From the conservation of energy of Maxwell equations:

$$
\begin{equation*}
\dot{\mathcal{E}}+\nabla \cdot(\boldsymbol{e} \times \boldsymbol{h})=0 \tag{6}
\end{equation*}
$$

Energy and symmetry considerations

we have:

$$
\begin{equation*}
\frac{\epsilon_{k l}}{2}\left(\dot{e}_{k} e_{l}+e_{k} \dot{e}_{l}\right)+\mu_{0} \dot{h}_{l} h_{l}=-\nabla \cdot(\boldsymbol{e} \times \boldsymbol{h}) . \tag{7}
\end{equation*}
$$

From the Poynting theorem of Maxwell equations:

$$
\begin{equation*}
\nabla \cdot(\boldsymbol{e} \times \boldsymbol{h})+\boldsymbol{e} \cdot \dot{\boldsymbol{d}}+\boldsymbol{h} \cdot \dot{\boldsymbol{b}}=0 \tag{8}
\end{equation*}
$$

by substituting into (7), we obtain:

$$
\begin{equation*}
\frac{\epsilon_{k l}}{2}\left(\dot{e}_{k} e_{l}+e_{k} \dot{e}_{l}\right)+\mu_{0} \dot{h}_{l} h_{l}=\epsilon_{k l} \dot{e}_{l} e_{k}+\mu_{0} \dot{h}_{l} h_{l} \tag{9}
\end{equation*}
$$

which implies:

$$
\begin{aligned}
& \text { Symmetry condition } \\
& \qquad \epsilon_{k l}=\epsilon_{l k}
\end{aligned}
$$

The dielectric tensor has only 6 independent elements.

Energy and symmetry considerations

- Question: can we simplify more the expression of $\underline{\underline{\epsilon}}$ for our study?

Energy and symmetry considerations

- Question: can we simplify more the expression of $\underline{\underline{\epsilon}}$ for our study? We can start from the expression of the electric energy density

$$
\begin{equation*}
\mathcal{W}_{e}=\frac{1}{2} \epsilon_{k l} e_{l} e_{k}=\frac{1}{2} \boldsymbol{e}^{T} \cdot \underline{\underline{\epsilon}} \cdot \boldsymbol{e} \tag{10}
\end{equation*}
$$

which is a quadratic form. In (10), ${ }^{T}$ is the transpose operator and . indicates the matrix product. Due to the Hermitian nature of the dielectric tensor $\underline{\underline{\epsilon}}=\underline{\underline{\epsilon}}^{\dagger}$, we can diagonalize $\underline{\underline{\epsilon}}$ by a similarity transformation $\underline{\underline{\gamma}}=\underline{\underline{t}}^{T} \underline{\underline{\epsilon t}}$, with $\underline{\underline{t}}$ a new reference system:

$$
\begin{equation*}
\boldsymbol{e}=\underline{\underline{t}} \boldsymbol{e}^{\prime} \tag{11}
\end{equation*}
$$

we have:

$$
\begin{equation*}
\mathcal{W}_{e}=\frac{1}{2} \boldsymbol{e}^{\prime T} \cdot \underline{\underline{t}} \underline{\underline{\epsilon t t}}^{T} \cdot \boldsymbol{e}^{\prime}=\frac{1}{2} \boldsymbol{e}^{\prime T} \cdot \underline{\underline{\gamma}} \cdot \boldsymbol{e}^{\prime} \tag{12}
\end{equation*}
$$

Energy and symmetry considerations

 with diagonal $\underline{\underline{\gamma}}$$$
\underline{\underline{\gamma}}=\left[\begin{array}{ccc}
\gamma_{1} & 0 & 0 \tag{13}\\
0 & \gamma_{2} & 0 \\
0 & 0 & \gamma_{3}
\end{array}\right]
$$

From (12), $\underline{\gamma}$ represents the expression of the new dielectric tensor in the reference system described by $\underline{\underline{t}}$, which is called principal axis reference. In order to construct $\underline{\underline{t}}$ and $\underline{\underline{\gamma}}$, we begin by calculating the eigenvalues and eigenvectors of $\underline{\underline{\epsilon}}$:

$$
\begin{equation*}
\underline{\underline{\epsilon} \boldsymbol{C}_{j}}=\alpha_{j} \boldsymbol{c}_{j}, \tag{14}
\end{equation*}
$$

with α_{j} the eigenvalue and \boldsymbol{c}_{j} the eigenvector of $\underline{\underline{\epsilon}}$, with $j=1,2,3$. Since the matrix $\underline{\underline{\epsilon}}$ is hermitian, eigenvalues are reals and eigenvectors are orthogonal to each other. The transformation matrix $\underline{\underline{t}}$ is then constructed from:

$$
\begin{equation*}
\underline{\underline{t}}=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right] \tag{15}
\end{equation*}
$$

Energy and symmetry considerations

- Exercise: Calculate the expression of $\underline{\underline{\gamma}}$

Answer: if the eigenvectors are normalized, i.e., if $\boldsymbol{c}_{\boldsymbol{i}} \boldsymbol{c}_{\boldsymbol{j}}=\delta_{i j}$, we can verify that:

$$
\underline{\underline{\gamma}}=\left[\begin{array}{ccc}
\alpha_{1} & 0 & 0 \tag{16}\\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right] .
$$

- Advanced Question: What are the physical implications of the similarity transformation $\underline{\gamma}$ on the electromagnetic fields \boldsymbol{e} and \boldsymbol{h} and why is it called similarity transform?

Outline

(1) Energy and symmetry considerations
(2) Classification of anisotropic crystals

(3) Plane waves in anisotropic crystals

Classification of anisotropic crystals

The analysis described above shows that only a maximum of 3 elements of the dielectric tensor can be really independent. Only the following cases are then possible for an anisotropic crystal:

- $\alpha_{1}=\alpha_{2}=\alpha_{3} \rightarrow$ This represents an isotropic material.
- $\alpha_{1}=\alpha_{2} \neq \alpha_{3} \rightarrow$ This indicates a Uniaxial crystal. The direction corresponding to α_{3} known as optical axis.
- $\alpha_{1} \neq \alpha_{2} \neq \alpha_{3} \rightarrow$ This is a Biaxial crystal.

Outline

(1) Energy and symmetry considerations
(2) Classification of anisotropic crystals
(3) Plane waves in anisotropic crystals

Plane waves in anisotropic crystals

Starting from Maxwell equations:

$$
\left\{\begin{array}{l}
\nabla \times \boldsymbol{h}=\partial_{t} \boldsymbol{d} \tag{17}\\
\nabla \times \boldsymbol{e}=-\partial_{t} \boldsymbol{b}
\end{array} \quad, \quad \partial_{t} \equiv \frac{\partial}{\partial t},\right.
$$

and looking for plane waves solutions $\boldsymbol{e}=\boldsymbol{E} e^{i \omega t-i \boldsymbol{k} \boldsymbol{r}}, \boldsymbol{h}=\boldsymbol{H} e^{i \omega t-i \boldsymbol{k} \boldsymbol{r}}$, we obtain:

$$
\left\{\begin{array}{l}
\boldsymbol{k} \times \boldsymbol{H}=-\omega \boldsymbol{D} \tag{18}\\
\boldsymbol{k} \times \boldsymbol{E}=\omega \mu_{0} \boldsymbol{H}
\end{array}\right.
$$

From these equations we observe that the field \boldsymbol{D} is orthogonal to \boldsymbol{k} and \boldsymbol{H}, while the field \boldsymbol{H} is orthogonal to \boldsymbol{E} and \boldsymbol{k}.

Plane waves in anisotropic crystals

- Exercise: Prove that $\boldsymbol{D}, \boldsymbol{H}$ and \boldsymbol{k} are mutually orthogonal to each other

Plane waves in anisotropic crystals

- Exercise: Prove that $\boldsymbol{D}, \boldsymbol{H}$ and \boldsymbol{k} are mutually orthogonal to each other

We can easily prove it from the divergence equations $\nabla \cdot \boldsymbol{d}=\nabla \cdot \boldsymbol{b}=0$, which lead to $\boldsymbol{k} \cdot \boldsymbol{D}=\boldsymbol{k} \cdot \boldsymbol{H}=0$.

- Advanced Question: What are the physical implications of this result?

Outline

(1) Energy and symmetry considerations
(2) Classification of anisotropic crystals
(3) Plane waves in anisotropic crystals
(4) Reference texts

Reference texts

- A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2006). Chapter 1
- A. Yariv, Quantum electronics (Wiley, 1989). Chapter 5

