ECE325 Advanced Photonics
 Light propagation in anisotropic crystals lesson 4

Andrea Fratalocchi

www.primalight.org
July 3, 2021

Outline

(1) Propagation of light in Uniaxial crystals

(2) Applications to optical instruments

- Half-wave retarder plate
- Quarter-wave plate
(3) Reference texts

Propagation of light in Uniaxial crystals

Exercise: consider a Uniaxial crystal with length L along z and optic axis in the plane (x, y). A plane wave with \boldsymbol{k} parallel to \hat{z} impinges on the crystal. Calculate the emerging Electric field at the output of the crystal.

\hat{n}_{o} and \hat{n}_{e} are unit vectors along the principal ordinary and extraordinary axes, respectively, while $E=\left[E_{x}, E_{y}, 0\right]$ is electric input field.

Propagation of light in Uniaxial crystals

For \boldsymbol{k} parallel to z, the plane waves propagating in the uniaxial crystals have refractive index n_{e} and n_{o}, with polarization vectors parallel to \hat{n}_{e} and \hat{n}_{o}, respectively. To solve for the propagation of the electric field, we decompose the field along \hat{n}_{e} and \hat{n}_{o} :

$$
\left[\begin{array}{l}
E_{x} \tag{1}\\
E_{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{c}
E_{o} \\
E_{e}
\end{array}\right]
$$

Each component E_{e} and E_{o} represents a plane wave solution
 inside the anisotropic crystal propagating with wavevector $\boldsymbol{k}_{e}=\frac{\omega}{c} n_{e} \hat{z}$ and $\boldsymbol{k}_{o}=\frac{\omega}{c} n_{o} \hat{z}$, respectively.

Propagation of light in Uniaxial crystals

After a distance $z=L$ in the uniaxial crystal, plane waves propagate as follows:

$$
\begin{align*}
& E_{o}(L)=E_{o}(0) e^{-i k_{o z} L}=E_{o} e^{-i \frac{\omega}{c} n_{o} L} \\
& E_{e}(L)=E_{e}(0) e^{-i k_{e z} L}=E_{e} e^{-i \frac{\omega}{c} n_{e} L} \tag{2}
\end{align*}
$$

In matrix form, the last expression reads:

$$
\left[\begin{array}{l}
E_{o}(L) \tag{3}\\
E_{e}(L)
\end{array}\right]=e^{-i \frac{\omega}{c} L \cdot \underline{n}}\left[\begin{array}{l}
E_{o}(0) \\
E_{e}(0)
\end{array}\right], \quad \underline{\underline{n}}=\left[\begin{array}{cc}
n_{o} & 0 \\
0 & n_{e}
\end{array}\right]
$$

Due to birefringence, the two plane waves, originally having the same phase, acquire a phase delay $\Delta \phi=\left(n_{o}-n_{e}\right) \frac{\omega L}{c}$ at $z=L$.

Propagation of light in Uniaxial crystals

It is convenient to write the propagation of the field as a function of the phase delay $\Delta \phi$:

$$
\left[\begin{array}{l}
E_{o}(L) \tag{4}\\
E_{e}(L)
\end{array}\right]=e^{-i \frac{1}{2}\left(n_{e}+n_{o}\right) \frac{\omega}{c} L}\left[\begin{array}{cc}
e^{-i \frac{\Delta \phi}{2}} & 0 \\
0 & e^{i \frac{\Delta \phi}{2}}
\end{array}\right]\left[\begin{array}{l}
E_{o}(0) \\
E_{e}(0)
\end{array}\right]=\underline{\underline{W}} \cdot\left[\begin{array}{l}
E_{o}(0) \\
E_{e}(0)
\end{array}\right]
$$

At the output of the crystal, in order to get back to the original coordinates, we apply a rotation:

$$
\left[\begin{array}{l}
E_{x}(L) \tag{5}\\
E_{y}(L)
\end{array}\right]=\underline{\underline{R}} \cdot \underline{\underline{W}} \cdot \underline{\underline{R}}^{\dagger} \cdot\left[\begin{array}{l}
E_{x}(0) \\
E_{y}(0)
\end{array}\right]
$$

with:

$$
\underline{\underline{R}}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{6}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

defining a rotation matrix in the (x, y) plane.

Propagation of light in Uniaxial crystals

The total input-output transfer matrix of the structure is then:

$$
\underline{\underline{R}} \cdot \underline{\underline{W}} \cdot \underline{\underline{R}}^{\dagger}=\left[\begin{array}{cc}
e^{-i \frac{\Delta \phi}{2}} \cos \theta^{2}+e^{i \frac{\Delta \phi}{2}} \sin \theta^{2} & -i \sin \frac{\Delta \phi}{2} \sin 2 \theta \tag{7}\\
-i \sin \frac{\Delta \phi}{2} \sin 2 \theta & e^{-i \frac{\Delta \phi}{2}} \sin \theta^{2}+e^{i \frac{\Delta \phi}{2}} \cos \theta^{2}
\end{array}\right]
$$

The approach used above to the model the propagation of electric field in anisotropic crystals is known as Jones Calculus, while the 2×2 transfer matrices that we used in the previous equations are known as Jones Matrices.
Exercise: verify that the transfer matrix is unitary, i.e., $\underline{\underline{T}} \cdot \underline{\underline{T}}^{\dagger}=\underline{\underline{1}}$, with $\underline{\underline{1}}$ being the identity matrix and $\underline{\underline{T}}=\underline{\underline{R}} \cdot \underline{\underline{W}} \cdot \underline{\underline{R^{\dagger}}}$.
Advanced question: what is the physical interpretation of this result?

Propagation of light in Uniaxial crystals

From a more general perspective, the approach we used to solve the propagation problem is based on eigenvalue decomposition:

and exploits the linearity of Maxwell equations. For nonlinear materials, this approach cannot be used and other strategies are employed based on more complex transforms.

Outline

(1) Propagation of light in Uniaxial crystals

(2) Applications to optical instruments

- Half-wave retarder plate
- Quarter-wave plate
(3) Reference texts

Half-wave retarder plate

It is composed by a uniaxial crystal in the configuration studied in the previous exercise, with:

$$
\begin{equation*}
\Delta \phi=\left(n_{e}-n_{o}\right) \frac{\omega}{c} L=\pi \tag{8}
\end{equation*}
$$

The length of the crystal is then $L=\frac{\lambda}{2 \Delta n}$, with $\Delta n=n_{e}-n_{0}$. In this system, when $\theta=\frac{\pi}{4}$, the transfer matrix $\underline{\underline{T}}$ reads:

$$
\underline{\underline{T}}=-i\left[\begin{array}{ll}
0 & 1 \tag{9}\\
1 & 0
\end{array}\right]=-i \sigma_{1}
$$

being σ_{1} the Pauli matrix.

Half-wave retarder plate

An x-polarized electric field at the beginning $E=[1,0]$, transforms into:

$$
\boldsymbol{E}(L)=-i \sigma_{1} \boldsymbol{E}=-i\left[\begin{array}{l}
0 \tag{10}\\
1
\end{array}\right]
$$

which represents a y-polarized field at the output.

Half-wave retarder plate

Exercise: calculate the evolution of a circular polarized electric field $\boldsymbol{E}=\frac{1}{\sqrt{2}}[1, i]$
Advanced question: design a power controller by using an half-wave retarder.

Half-wave retarder plate

Exercise: calculate the evolution of a circular polarized electric field $\boldsymbol{E}=\frac{1}{\sqrt{2}}[1, i]$
Advanced question: design a power controller by using an half-wave retarder. We can use a half-wave retarder plate followed by a polarizer. We can verify that the transfer matrix of a polarizer is:

$$
\underline{\underline{P}}_{x}=\left[\begin{array}{ll}
1 & 0 \tag{11}\\
0 & 0
\end{array}\right], \quad \underline{\underline{P}} y=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

for an x-polarizer and y-polarizer, respectively. If we orient the half-wave retarder plate at a generic θ, the transfer matrix becomes:

$$
\underline{\underline{T}}=-i\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \tag{12}\\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]
$$

Half-wave retarder plate

Consider a generic field at the input linearly polarized, in this example along $x, \boldsymbol{E}=\left[E_{x}, 0\right]$. At the output of the system crystal + polarizer, we have:

$$
\left[\begin{array}{l}
E_{x}(L) \tag{13}\\
E_{y}(L)
\end{array}\right]=\underline{\underline{P}}_{x} \cdot \underline{\underline{T}} \cdot\left[\begin{array}{c}
E_{x} \\
0
\end{array}\right]=\left[\begin{array}{c}
E_{x} \cos 2 \theta \\
0
\end{array}\right]
$$

as a result, the output intensity $I=|\boldsymbol{E}|^{2}=\left|E_{x}\right|^{2} \cos 2 \theta^{2}$ cab be modulated between 0 and $\left|E_{x}\right|^{2}$ by simply acting on the rotation angle of the crystal. When $\theta=\frac{\pi}{4}$, the output intensity is 0 , as expected. In this condition, in fact, the half-wave retarder rotates the input polarization and the polarizer prevents the beam to pass through the system.

Quarter-wave retarder plate

It is composed by a uniaxial crystal with:

$$
\begin{equation*}
\Delta \phi=\left(n_{e}-n_{o}\right) \frac{\omega}{c} L=\frac{\pi}{2} \tag{14}
\end{equation*}
$$

The length of the crystal is then
$L=\frac{\lambda}{4 \Delta n}$, with $\Delta n=n_{e}-n_{0}$. In this system, when $\theta=\frac{\pi}{4}$, the transfer matrix $\underline{\underline{T}}$ reads:

$$
\underline{\underline{T}}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -i \tag{15}\\
-i & 1
\end{array}\right]
$$

This transforms linearly polarized beams into circularly polarized light and vice-versa.

Retarder plates

Advanced question: A student is investigating the propagation of light in a system composed by two polarizers in cross configuration. Due to this configuration, no light is expected to emerge from the system. However, the student observes that if he puts a half-retarder plate in between the two polarizers, some light emerges from the system. Explain the phenomenon.

Outline

(1) Propagation of light in Uniaxial crystals

(2) Applications to optical instruments

- Half-wave retarder plate
- Quarter-wave plate
(3) Reference texts

Reference texts

- A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University Press, 2006). Chapter 1
- A. Yariv, Quantum electronics (Wiley, 1989). Chapter 5

