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Phase modulation

Exercise: design a phase modulation system by using a KDP crystal.

We
can use a standard amplitude modulator system, as illustrated in the
previous lesson, where we launch an ordinary solution along x ′ or y ′. In
this case the output electric field reads:

Ex ′(L) = Ex ′e
−i ω

c
∆nL = Ex ′e

−i ωn3
0r63E0z L

2c . (1)

If we modulate the voltage in time E0z = Em cos(ωmt), the time evolution
of the electric field ex ′ = <(Ex ′) becomes modulated in phase:

ex ′(t) = cos

[
ωt − ωL

c

(
n0 −

n3
0

2
r63Em cosωmt

)]
. (2)

This system acts as a phase modulator.
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Transverse modulation

Question: in the previous modulators, the bias voltage was applied on the
input and output facet of the crystal, interfering with the propagation of
the optical waves. How to overcome this issue?

x

y

KDP

V(t)

x’-polarizer y’-polarizer

input light output 
x’

Figure: a traverse optical modulator
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Transverse modulation

In the previous figure, the input light excites two ordinary waves with index

ne and n0 +
n3

0
2 r63E0z . The phase shift ∆φ accumulated after a distance L

in the crystal is then:

∆φ =
ωL

c

(
n0 +

n3
0

2
r63E0z − ne

)
. (3)

Exercise: Calculate the output intensity of the transverse modulator
illustrated in the figure of slide 4.
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Maxwell equations in lossy materials
In a non-instantaneous, linear and isotropic material, Maxwell equations
read:{

∇× eee = −∂tbbb,
∇× hhh = ε0∂teee + jjj

, jjj = ε0

∫
dtdrrr ′σ

(
rrr − rrr ′, t − t ′

)
eee(rrr , t), (4)

with jjj the internal current density generated in the lossy material and σ
the non instantaneous conductivity. Energy conservation is expressed by
the continuity equation:

∂ρ

∂t
+∇ · jjj = 0, (5)

being ρ the internal charge density. By combining the latter with the
divergence equation ∇ · ppp = −ρ, with p the electric dipole moment per
unit volume inside the material, we have:

jjj =
∂ppp

∂t
, (6)

which relates the current flux with the time variation of the electric dipole
moment ppp.
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Maxwell equations in lossy materials

by moving in the Fourier domain
∫
dtdrrre iωt−kkk·r , we have:

JJJ = σ (KKK , ω)EEE (kkk, ω). (7)

From the latter equation and (6), we have:

DDD = ε0EEE +PPP = ε0EEE +
JJJ

iω
= ε0

(
1 +

σ

iω

)
EEE = ε0ε (KKK , ω)EEE , (8)

with:

ε (KKK , ω) = 1 +
σ (KKK , ω)

iω
= ε1 + iε2, (9)

identifying the dielectric response of the lossy material, with real ε1 and
imaginary ε2 contributions.
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Maxwell equations in lossy materials

In optics, we usually use a complex refractive index n + ik =
√
ε for

characterizing materials, with k the extinction coefficient. From equation
(9) we have: {

ε1 = n2 − k2,

ε2 = 2nk,
(10)

which can be easily inverted to get n and k as a function of ε1 and ε2. In
many situations, we can simplify the general form of the conductibility
σ(KKK , ω)→ σ(ω), by considering a homogenous material. This assumption
is valid as long as the wavelength λ is larger than the mean free path of
the electrons in the system. This is typically true for wavelengths λ larger
than the ultraviolet.
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The plasma model
Is a fundamental model that describes the electrons as a free electron gas.
It provides a microscopic foundation for more complex models of metals
and lossy materials.
The classical motion of an electron in a plasma subjected to an external
field is:

m∂2
t rrr + mγ∂trrr + qeee = 0, (11)

being m the effective mass of the electron, n the electron density, q the
electric charge and γ = 1

τ the electron collision frequency, with collision
time τ . For a monochromatic excitation eee = EEEe iωt , we can solve the
equation of motion for the displacement rrr :

rrr =
q

m(ω2 + iγω)
EEE , (12)

and the corresponding macroscopic polarization PPP:

PPP = −nqrrr = − nq2

m(ω2 + iγω)
EEE . (13)

Andrea Fratalocchi (www.primalight.org) ECE325 Advanced Photonics July 3, 2021 10 / 18



The plasma model

From (6), we have:

σ(ω) = −i ωnq2

m(ω2 + iγω)
= −iωε0

ω2
p

ω2 + iγω
, (14)

with ω2
p = nq2

ε0m
the plasma frequency of the electron gas. The

corresponding dielectric constant becomes:

ε(ω) = 1−
ω2
p

ω2 + iγω
,

ε1(ω) = 1− ω2
pτ

2

1+ω2τ2 ,

ε2(ω) =
ω2
pτ

ω(1+ω2τ2)

, (15)

the complex dielectric function of the plasma model. For typical metals,
the characteristic plasma wavelength λp = 2πc

ωp
≈ 100 nm and the collision

time is τ ≈ 10−14s.
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The undamped free electron plasma
For a collisionless plasma, we have γ ≈ 0. This idealized condition leads to:

ε(ω) = 1−
(ωp

ω

)2
, (16)

which represents the response of the undamped free electron plasma.
Equation (16) models quite well metals at microwave ranges and at the
beginning of the THz window. The reflectivity spectrum R(ω) at normal
incidence for a material described by (16) is:

R(ω) =

∣∣∣∣√ε− 1√
ε+ 1

∣∣∣∣2 =

∣∣∣∣∣∣
√

1− ω2
p

ω2 − 1√
1− ω2

p

ω2 + 1

∣∣∣∣∣∣
2

. (17)

For ω ≤ ωp, we have
√
ε = i

√
ω2
p/ω

2 − 1, and the system response is that

of an ideal metal with R(ω) = 1. For ω > ωp, conversely, the reflectivity
tends progressively to zero, indicating the presence of propagating waves in
the structure.
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The presence of collisions

At optical wavelengths, for ωτ � 1, metals are highly absorbing with
ε2 � ε1: {

ε1(ω) ≈ 1− ω2
pτ

2,

ε2(ω) ≈ ω2
pτ

ω

, (18)

which leads to n ≈ k =
√

ε2
2 =

√
ωpτ
2ω . The absorption coefficient α = 2kω

c

is then:

α =

√
2ω2

pτω

c2
, (19)

and the corresponding penetration length, or skin depth is

δ = 2
α = c

kω =
√

2c2

ωτω2
p

. In typical metals, we have δ ≈ 100 nm. The

reflectivity spectrum shows the same behavior of the undamped case, but
with a lower reflectivity R < 1 for ω < ωp due to material absorption
ε2 6= 0.
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The contribution of interband transitions

At optical wavelengths, especially near the ultraviolet, we need to take into
account interband transitions, which generate resonances in the dielectric
response that are not modeled by the plasma model. The complex
dielectric response of a metal is typically expressed as follows:

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
+
∑
n

ω2
pn

ω2 − ω2
n0 + 2iγnω

, (20)

as a sum of the the response of a free electron plasma with a series of
Lorentz oscillators describing interband transitions. Each oscillator is
characterized by a resonant frequency ω0n, amplitude ωpn and damping γn.
The calculation of the various coefficients in the oscillators is either done
experimentally, by fitting reflectivity spectra of the material, or
theoretically from first principle quantum chemistry simulations. In (20),
ε∞ represent the dielectric response of the system at ω →∞. One or two
Lorentz oscillators are typicaly enough to model a metal response in the
visible range.
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Plane waves in lossy materials
From the wave equation:

∇×∇× eee + µ0
∂2ddd

∂t2
= 0, (21)

moving into the Fourier domain
∫
dtdrrre iωt−kkk·rrr , we have:

kkk(kkk ·EEE )− k2EEE + ε(KKK , ω)
ω2

c2
EEE = 0, (22)

which implies the following plane wave solutions:

Transverse waves for kkk ·EEE = 0. This implies the dispersion relation:

k2 = ε(kkk, ω)
ω2

c2
, (23)

Longitudinal waves for kkk ×EEE = 0. From (22), we have:

ε(kkk , ω) = 0. (24)

This shows that longitudinal waves do not exist at every frequency,
but only at the zeros of ε(kkk , ω).
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Transverse Plane waves: volume plasmons

For the sake of simplicity and
without loss of generality, we
consider the dielectric permittivity

ε(ω) = 1− ω2
p

ω2 of a collisionless
plasma (see Eq. 16 of lesson 7).
This yield the following dispersion
relation for longitudinal waves:

ω = ωp

√
1 +

k2c2

ω2
p

. (25)

Longitudinal plane waves exist only
above the plasma frequency for
ω ≥ ωp. These plane waves are
called volume plasmons.

kc/ω
p
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Exercise: calculate the dispersion
relation in the presence of nonzero
collision time τ in the plasma model.
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