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Optical waveguides
An optical waveguide is a photonic structures able to guide light energy
inside its structure. Optical waveguides are characterized by a geometry
that is symmetric along a direction in space, which identifies the propagation
direction of energy. A slab waveguide is the simplest type of waveguide,
symmetric along two directions (y and z) and with refractive index changing
along x. The guided region has index n1, thickness d and is surrounded by
two semi-infinite regions of constant refractive indices n2 and n3. We assume
that n1 > n2 ≥ n3.
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Waveguides modes

Waveguides support the propagation
of radiation energy via waveguides
modes. A guided mode is a par-
ticular wave characterized by a con-
stant intensity profile, and an electro-
magnetic field varying as ∼ e i(βy−ωt),
with y the propagation direction of
the field, β the propagation constant
of the mode and ω light’s frequency.
The simplest description of modes in a
slab waveguide can formulated via ray
optics. While ray optics is in general
an approximation of waveguide op-
tics, it provides an exact description of
modes for dielectric slab waveguides.
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Ray optics description of slab waveguide modes

A generic ray is trapped entirely in the guided region of refractive index n1
if the angle θ1 is smaller than the critical angle for total internal reflection:

n1 sinα1 ≥ n2, and n1 sinα1 ≥ n3, (1)

where we have introduced the complementary angle α1 = π
2 −θ1, measured

from the normal of slab surface. From a wave perspective, each ray rep-
resents a plane wave with wavevector kkk = kŝ, with ŝ the direction of the
ray. This implies that the plane wave associated to the ray in figure evolves
along y as e iky y = e i(k·n1 sinα1·y). The propagation constant β of the ray is
then β = k · n1 sinα1 = k · neff . The quantity n1 sinα1 = neff acts like an
effective index seen by the plane wave when propagating inside the material.

Andrea Fratalocchi (www.primalight.org) ECE325 Advanced Photonics March 15, 2022 5 / 15



Ray optics description of slab waveguide modes

The condition imposed by Eq. (1) is a necessary condition for a ray to be a
guided mode, but is not itself sufficient. This because it does not guarantee
that the electromagnetic field associated to the ray evolves at every y as
∼ e i(βy−ωt), with β constant.
This condition is illustrated in the figure below. The points A and C belong
to the same front of the plane wave, as well as the points B and D. Since all
points of a phase front of a plane wave must be in phase, we must require
that the optical path length of the ray AB differs from the ray CD by an
integer multiple of 2π.
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Ray optics description of slab waveguide modes
This condition is written as follows:

∆φCD−AB + φC + φD = 2mπ, m = 0,±1, ... (2)

with:
1) ∆φCD−AB = kn1(`CD − `AB) the phase difference between the paths AB
and CD, with `CD = d

sin θ1
the length of the ray CD, `AB = `CB sinα1 the

length of AB with `CB = `CD − `BD = d
tan θ1

− d tan θ1. This implies:

∆φCD−AB = 2kn1d cosα1 (3)
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Ray optics description of slab waveguide modes

2) φC and φD the phase shifts (Fresnel formulas) at points C and D. In TIR

condition we have sinαt = sinαi
n , cosαt = i

√
sin2 αt

n2 − 1, n = n2/n1, and:{
RTE = Er

Et
= q

q† = e i2δTE , q = cosαi − i
√

sin2 αi − n2,

RTM = Er
Et

= z
z† = e i2δTM , z = n2 cosαi − i

√
sin2 αi − n2,

(4)

leading to:

δTE = − tan−1

(√
sin2 αi − n2

cosαi

)
, δTM = − tan−1

(√
sin2 αi − n2

n2 cosαi

)
(5)
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TE Modes dispersion relation, symmetric waveguide

We will begin our study with symmetric waveguide n2 = n3 ≡ n and for
TE modes. The discussion of TM and asymmetric case does not show any
qualitative difference.
By substituting Eqs. (3)-(5) for TE polarization into (2), we obtain:

2kn1dξ = mπ + 2 tan−1

√
n21 − n2 − n21ξ

2

n21ξ
2

, ξ = cosα1, (6)

which can be written in the following universal form:

V
√

1− b = mπ + 2 tan−1

√
b

1− b
,

V = 2kd
√
n21 − n2,

b = 1− n2
1ξ

2

n2
1−n2 ,

(7)

with V = 2kd
√
n21 − n2 the normalized frequency and b =

n2
eff −n2

n2
1−n2 the

normalized equivalent refractive index. Both V and b are adimensional.
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TE Modes dispersion relation, symmetric waveguide

Equation (7) is the dispersion relation of guided TE modes in a symmetric
waveguide. It is a dispersion relation as it relates the frequency of the mode
V (ω = ck) with the mode propagation constant β = k · neff .

V
√

1− b = mπ + 2 tan−1

√
b

1− b
, (8)

The figure on the right shows the plot
V(b) for the first m = 0, 1, 2, 3, 4 TE
modes of the slab waveguide. The
index 0 ≤ b < 1, which implies
n ≤ neff ≤ n1. The number N of
modes supported by the waveguide is
given by:

N = int

(
V

π

)
(9) 0 1 2 3 4 5
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Dispersion relation of TM Modes

By repeating the same analysis for TE modes, and by using the Fresnel
formulas for TM phase shifts in Eq. (2), we obtain:

V
√

1− b = mπ + 2 tan−1

(
n21
n2

√
b

1− b

)
, (10)

At variance with the TE case, this expression is no longer universal and
contains the material properties in the ratio n1/n. However, in many cases
n1/n� 1 and the universal TE curve can be used to a good approximation
for studying TM modes. No qualitative difference exist with the TE case.
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Asymmetric slab waveguides
The dispersion relation from Eq. (2) reads:

V
√

1− b = mπ + tan−1

√
b

1− b
+ tan−1

√
a + b

1− b
, (11)

with a =
n2
2−n2

3

n2
1−n2

2
the asymmetry parameter varying between 0 (symmetric

case) and ∞.
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Differently from the symmetric case,
a cutoff frequency appears in the dis-
persion for each mode to exist:

V (0) = mπ + tan−1√a (12)

In the largest asymmetric case a →
∞, V (0) = π(m + 1

2), which implies
a cutoff frequency for all modes, in-
cluding the TE0 at m = 0.
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Exercises & Questions

1 Write a program that, for a slab waveguide with given wavelength,
thickness d , n1, n2 and n3 calculates the effective indices neff of all
the guided modes propagating in the structure

2 Calculate the numerical aperture of a microscope objective that could
excite the propagation of guided modes into a symmetric slab
waveguide of given indices n1 and n2, thickness d , and at a specific
frequency ω.

3 Given the effective index neff of a guided mode, how to calculate the
corresponding electromagnetic field?
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Reference texts

T. Tamir, Guided-wave optoelectronics (Springer, 1988). Chapter 2.

Dietrich Marcuse, Theory of Dielectric Optical Waveguides (Second
Edition) (Academic Press, 1991). Chapter 1.
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