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Optical resonators

Optical resonator a system possessing one or multiple resonances. A res-
onance is a characteristic frequency ω0 able to accumulate
electromagnetic energy in both space and time.

Resonators are typically implemented with finite volume structures that
supports the generation of different types of standing waves. To evaluate
the ability of a resonator to trap energy, we use the quality Q-factor.
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Q-factor
The quality factor Q is an adimensional parameter defined as follows:

Q = ω0
W

Pd
, (1)

with:

ω0 resonance frequency

W energy stored inside the resonator

Pd power dissipated by the resonator

The evolution of the energy of the resonator is computed from the energy
balance equation, which is obtained by considering that the variation of
energy in time should be equal to the power dissipated by the resonator:

dW

dt
= −Pd = −ω0

W

Q
, W (t) = W (0)e−

ω0
Q
t (2)

A large Q implies that the energy will be released on longer times and will
strongly accumulate inside the resonator.
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Q-factor

The evolution of the electric field in
a resonator is EEE = EEE 0e

iω0t− t
τ , with τ

the decaying constant. As the electro-
magnetic energy W ∝ |EEE |2, we have:

EEE (t) = EEE 0e
iω0t−

ω0
2Q

t (3)

with τ = 2Q
ω0

.
The power density spectrum of the electromagnetic field:

|EEE (ω)|2 = |F [EEE (t)]|2 =
1

(ω0 − ω)2 +
(

ω0
2Q

)2 (4)

with F indicating the Fourier transform, acquires the characteristic shape
of a Lorenzian function.
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Q-factor

The frequency profile of the function
defines all the quantities of interest
for a resonator: the amplitude max-
imum occurs at the resonance ω0,
and the Full Width Half Maxmimum
FWHM = 2δω = ω0

Q defines the
Quality factor. The higher the Q, the
narrower the linewidth.
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TDCMT

The time-domain coupled mode the-
ory is a powerful framework to study,
with relative simple equations, the dy-
namics of energy in open resonator
coupled with the environment via mul-
tiple channels or ports, each repre-
sented with incoming (+) and re-
flected (-) waves. These could be, for
example, modes of waveguides reach-
ing the resonator or scattering waves
impinging from an open space.

Figure: 1. TDCMT setup
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TDCMT

Historically, the TDCMT equations were derived intuitively and, as such,
it was long believed that this model was approximate, missing an exact
link that could show the relationships between the quantities of interest
in the TDCMT, and in particular the various mode amplitudes, and the
spatio-temporal profile of the resonator modes. This opened the question of
whether it was possible to derive a rigorous demonstration of the TDCMT,
providing the missing link and addressing long standing questions about
definition of resonator modes.
The answer to this question was demonstrated recently with the use of
singular theory, showing a fomrulation in which the TDCMT equations are
exact, and fully equivalent to Maxwell equations. We here describe the
derivation of the time domain equations and their applications, reminding
the reader to the References for the exact derivation from Maxwell equations.
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TDCMT

The starting point of the TDCMT is to model the dynamics of the time
energy inside the resonator with a generalized set of equations, and then
study the relationships among the various parameters by using physical con-
servation laws. With reference to Fig. 1, we assume that the resonator is
described by a row amplitude vector aaa = [a1, ..., an], with am(t) representing
the amplitude of the m-th resonance. We assume that the amplitudes are
normalized in such a way that the electromagnetic energy of each resonance
is |am(t)|2 and the total electromagnetic energy W = aaa† · aaa.
If the resonator is linear, the evolution of the resonance amplitudes follows
from a linear dynamics, which in the general case is of the form:

daaa

dt
= H · aaa + K · sss+ (5)

with K couplings with the incoming waves sss+ = [s1+, ..., s1m], and H a
matrix characterizing the properties of resonator modes.
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TDCMT

To understand the physical nature of H, we can decompose it into an skew-

Hermitian matrix iΩ, with Ω† = Ω, and an Hermitian part Ω† = Ω, obtain-
ing H = iΩ − Γ. The matrix Ω contains the resonant frequencies of the
resonator modes, and Γ the losses.
The vector sss− = [s1−(t), s2−(t), ..., sm−(t)] contains the amplitudes of the
time-domain component scattered from the resonator, and is expressed by
using linear superposition:

sss− = C · sss+ + D · aaa, (6)

with C the matrix response obtained in the absence of the resonator modes
(aaa = 0), also known as scattering matrix, and D the one obtained in the
absence of impinging sources (sss+ = 0). We assume that the amplitudes of
impinging and outgoing waves sm± are normalized such that |sm±|2 repre-
sents the power carried by the wave, coherently to the same normalization
employed in the CMT for waveguide modes.
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TDCMT

The matrices H, K , C , D are not independent, as the dynamical system of
the resonator interacting with the environment has to satisfy energy conser-
vation. The energy balance equation reads as follows:

dW

dt
= sss†+ · sss+ − sss†− · sss−, (7)

and implies that the time variation of total energy of the resonator equals
the difference between the power injected by the system by the incoming
waves and the power removed from the resonator by outgoing contributions.
By substituting (5)-(6) into (7), we obtain:

aaa†
(
−2Γ + D†D

)
·aaa+sss+

(
C †C − 1

)
sss+ +

[
sss+
(
K † + C †D

)
aaa + H.c .

]
= 0

(8)
with H.c . the Hermitian conjugate.
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TDCMT

Equation (8) implies the following conditions:

C †C = CC † = 1 the scattering matrix is unitary

D = −C · K † defines the outgoing couplings in terms of the couplings K

Γ = K † · K/2 defines the losses in terms of the couplings K

The complete dynamical system reads:ȧaa =

(
iΩ− K ·K†

2

)
+ K · sss+,

sss− = C ·
(
sss+ − K †

)
· aaa,

(9)

with ȧaa = daaa/dt. The system is defined once the matrices Ω, K , C are set.
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2 ports system with one resonance

Let us consider an example of application furnished by the general system
illustrated below: a 2-ports system interacting with a single resonance.

For this system, we have the following matrices:

C =

[
r t
−t∗ r∗

]
, with |r |2 + |t|2 = 1, and r and t the scattering reflection

and transmission, respectively, of the input signal sin
measured when the resonator is absent.

K =
[
γ1 γ2

]
, with γ1 and γ2 coupling coefficients of the left and right

channel into the resonator.

Ω = ω0 , with ω0 the resonance
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2 port system with one resonance
The reflection R and transmission T output obtained by solving the TDCMT
equation for this system yields a generalized Fano profile, which is capable
of creating very complex responses, from perfect transmission, to perfect
reflection, or both by simply acting on the coupling and scattering:

This platform provides an effective system to control light properties and
engineer desired responses. This is currently a hot topic in research in
the field of Mie-tronic, Methaphotonics, Inverse design, Metasurfaces, Flat-
optics, Radiationless states, and other integrated components that can mold
the flow of light at the nanoscale.
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Reference texts

Initial formulation: H. A. Haus, Waves and Fields in Optoelectronics
(Prentice-Hall, 1983), Chap. 7.

Exact formalism: Generalized Maxwell projections for multi-mode
network Photonics. Sci. Rep. 10, 9038 (2020).
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